Page 43 - Kỷ yếu hội thảo khoa học quốc tế - Ứng dụng công nghệ mới trong công trình xanh , lần thứ 8
P. 43

26                               TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT - ĐẠI HỌC ĐÀ NẴNG

                     on glass substrate using nanosecond fiber laser and   [9]  Masuzawa T, Fujino M, Kobayashi K, et al (1985).
                     etching.  Appl  Surf  Sci  336:163–169.  doi:   Wire  Electro-Discharge  Grinding  for  Micro-
                     10.1016/j.apsusc.2014.10.122.                  Machining.  CIRP  Ann  -  Manuf  Technol  34:431–
                  [3]  Lin  HK,  Hsu  WC  (2014).  Electrode  patterning  of   434. doi: 10.1016/S0007-8506(07)61805-8.
                     ITO  thin  films  by  high  repetition  rate  fiber  laser.   [10]  Lim  YM,  Kim  SH  (2001).  An  electrochemical
                     Appl    Surf    Sci   308:58–62.   doi:        fabrication  method  for  extremely  thin  cylindrical
                     10.1016/j.apsusc.2014.04.084.                  micropin.  Int  J  Mach Tools  Manuf  41:2287–2296.
                  [4]  Cheng  CW,  Lin  CY  (2014).  High  precision   doi: 10.1016/S0890-6955(00)00129-2.
                     patterning  of  ITO  using  femtosecond  laser   [11]   Fan  ZW,  Hourng  LW,  Wang  CY  (2010).
                     annealing process. Appl Surf Sci 314:215–220. doi:   Fabrication  of  tungsten  microelectrodes  using
                     10.1016/j.apsusc.2014.06.174.                   pulsed  electrochemical  machining.  Precis  Eng
                  [5]  Risch  A,  Hellmann  R  (2011).  Picosecond  laser   34:489–496.   doi:   10.1016/j.precisioneng.
                     patterning of ITO thin films. Phys Procedia 12:133–  2010.01.001.
                     140. doi: 10.1016/j.phpro.2011.03.115.      [12] Chiou Y-C, Lee R-T, Chen T-J, Chiou J-M (2012).
                  [6]  Climent-Pascual E, García-Vélez M, Álvarez ÁL, et   Fabrication of high aspect ratio micro-rod using a
                     al (2015). Large area graphene and graphene oxide   novel  electrochemical  micro-machining  method.
                     patterning  and  nanographene  fabrication  by  one-  Precis  Eng  36:193–202.  doi:  10.1016/j.precisioneng.
                     step  lithography.  Carbon  N  Y  90:110–121.  doi:   2011.09.004.
                     10.1016/j.carbon.2015.04.018.               [13] Mathew R, Sundaram MM (2012). Modeling and
                  [7]  Hohnholz D, Schweikart K-H, Hanack M (1999). A   fabrication of micro tools by pulsed electrochemical
                     Simple  Method  for  the  Subdivision  of  ITO  Glass   machining.  J  Mater  Process  Technol  212:1567–
                     Substrates.   Adv   Mater   11:646–649.   doi:   1572. doi: 10.1016/j.jmatprotec.2012.03.004.
                     10.1002/(SICI)1521-4095(199906)11:8<646::AID-  [14] Duong T, Kim H (2015). Electrochemical etching
                     ADMA646>3.0.CO;2-6.                            technique for tungsten electrodes with controllable
                                                                    profiles  for  micro-electrical  discharge  machining.
                  [8]  Jim??nez-Trillo  J,  Alvarez  ALL,  Coya  C,  et  al
                     (2011).  The  use  of  arc-erosion  as  a  patterning   Int  J  Precis  Eng  Manuf  16:1053–1060.  doi:
                     technique  for  transparent  conductive  materials.   10.1007/s12541-015-0136-8.
                     Thin  Solid  Films  520:1318–1322.  doi:  10.1016/
                     j.tsf.2011.04.153.
























               ISBN: 978-604-80-9122-4
   38   39   40   41   42   43   44   45   46   47   48